Burn Serum Increases Staphylococcus aureus Biofilm Formation via Oxidative Stress

نویسندگان

  • Supeng Yin
  • Bei Jiang
  • Guangtao Huang
  • Yali Gong
  • Bo You
  • Zichen Yang
  • Yu Chen
  • Jing Chen
  • Zhiqiang Yuan
  • Ming Li
  • Fuquan Hu
  • Yan Zhao
  • Yizhi Peng
چکیده

Staphylococcus aureus is a common pathogen isolated from burn patients that can form biofilms on burn wounds and implanted deep vein catheters, which often leads to refractory infections or even biofilm-related sepsis. As biofilm formation is usually regulated by environmental conditions, we hypothesized that serum composition may be altered after burn injury, potentially affecting the ability of infecting bacteria to form biofilms. As predicted, we observed that serum from burn-injured rats increases biofilm formation by S. aureus and also induces bacterial aggregation and adherence to human fibronectin and fibrinogen. Analysis of potential regulatory factors revealed that exposure to burn serum decreases expression of the quorum-sensing agr system and increases mRNA levels of some biofilm inducers such as sarA and icaA. In addition, we also observed that burn serum imposes oxidative stress and increases expression of key oxidoreductase genes (sodA, sodM, katA, and ahpC) in S. aureus. Importantly, the ability of burn serum to enhance biofilm formation and bacterial cell aggregation can be abrogated by treatment with an antioxidant. Taken together, these findings indicate that burn serum increases S. aureus biofilm formation via elevated oxidative stress, and may lead to novel strategies to control biofilm formation and infection in burn patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress.

The strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such as Staphylococcus aureus are members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive component...

متن کامل

Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation.

Copper is an important cofactor for many enzymes; however, high levels of copper are toxic. Therefore, bacteria must ensure there is sufficient copper for use as a cofactor but, more importantly, must limit free intracellular levels to prevent toxicity. In this study, we have used DNA microarray to identify Staphylococcus aureus copper-responsive genes. Transcriptional profiling of S. aureus SH...

متن کامل

Biofilm formation and antimicrobial resistance in methicillin-resistant Staphylococcus aureus isolated from burn patients, Iran.

INTRODUCTION Burns are the most serious forms of trauma and a major cause of mortality worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common pathogens of burn wound infections; treatment has faced serious problems due to antibiotic resistance in these strains. Biofilm formation, which increases antibiotic resistance capabilities and is considered to be a virule...

متن کامل

Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin resistant Staphylococcus aureus

Objective(s):Staphylococcus aureus is a Gram-positive pathogen, well known for its resistance andversatile lifestyle. Under unfavourable conditions, it adapts biofilm mode of growth. For staphylococcal biofilm formation, production of extracellular polymeric substances (EPS) is a pre-requisite, which is regulated by ica operon-encoded enzymes. This study was designed to know the impact of ascor...

متن کامل

Biofilm Formation in Staphylococcus Aureus and its Relation to Phenotypic and Genotypic Criteria

Abstract Background and Objective: Biofilm is a complex microbial community embedded in a self-produced extracellular polymeric matrix. We aimed to study the extent of biofilm formation by S. Areas isolates and its relation to some phenotypic and genotypic criteria. Material and Methods: One hundred-fifty strains of Staphylococcus aureus isolated from Gorgan were studied. Microtiter plate a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017